Search results “Naive bayes classification algorithm in data mining”

In the bayesian classification
The final ans doesn't matter in the calculation
Because there is no need of value for the decision you have to simply identify which one is greater and therefore you can find the final result.
-~-~~-~~~-~~-~-
Please watch: "PL vs FOL | Artificial Intelligence | (Eng-Hindi) | #3"
https://www.youtube.com/watch?v=GS3HKR6CV8E
-~-~~-~~~-~~-~-

Views: 123278
Well Academy

Naive Bayes Classification Algorithm – Solved Numerical Question 1 in Hindi
Data Warehouse and Data Mining Lectures in Hindi

Views: 13106
Easy Engineering Classes

Naive Bayes Classifier- Fun and Easy Machine Learning
https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML
Now Naïve Bayes is based on Bayes Theorem also known as conditional Theorem, which you can think of it as an evidence theorem or trust theorem. So basically how much can you trust the evidence that is coming in, and it’s a formula that describes how much you should believe the evidence that you are being presented with. An example would be a dog barking in the middle of the night. If the dog always barks for no good reason, you would become desensitized to it and not go check if anything is wrong, this is known as false positives. However if the dog barks only whenever someone enters your premises, you’d be more likely to act on the alert and trust or rely on the evidence from the dog. So Bayes theorem is a mathematic formula for how much you should trust evidence.
So lets take a look deeper at the formula,
• We can start of with the Prior Probability which describes the degree to which we believe the model accurately describes reality based on all of our prior information, So how probable was our hypothesis before observing the evidence.
• Here we have the likelihood which describes how well the model predicts the data. This is term over here is the normalizing constant, the constant that makes the posterior density integrate to one. Like we seen over here.
• And finally the output that we want is the posterior probability which represents the degree to which we believe a given model accurately describes the situation given the available data and all of our prior information. So how probable is our hypothesis given the observed evidence.
So with our example above. We can view the probability that we play golf given it is sunny = the probability that we play golf given a yes times the probability it being sunny divided by probability of a yes. This uses the golf example to explain Naive Bayes.
To learn more on Augmented Reality, IoT, Machine Learning FPGAs, Arduinos, PCB Design and Image Processing then Check out
http://www.arduinostartups.com/
Please like and Subscribe for more videos :)

Views: 83778
Augmented Startups

naive Bayes classifiers in data mining or machine learning are a family of simple probabilistic classifiers based on applying Bayes' theorem with strong (naive) independence assumptions between the features.
Naive Bayes has been studied extensively since the 1950s. It was introduced under a different name into the text retrieval community in the early 1960s,and remains a popular (baseline) method for text categorization, the problem of judging documents as belonging to one category or the other (such as spam or legitimate, sports or politics, etc.) with word frequencies as the features. With appropriate pre-processing, it is competitive in this domain with more advanced methods including support vector machines. It also finds application in automatic medical diagnosis.
for more refer to
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
naive bayes classifier example for play-tennis
Download PDF of the sum on below link
https://britsol.blogspot.in/2017/11/naive-bayes-classifier-example-pdf.html
*****************************************************NOTE*********************************************************************************
The steps explained in this video is correct but
please don't refer the given sum from the book mentioned in this video coz the solution for this problem might be wrong due to printing mistake.
****************************************************************************************************************************************
All data mining algorithm videos
Data mining algorithms Playlist:
http://www.youtube.com/playlist?list=PLNmFIlsXKJMmekmO4Gh6ZBZUVZp24ltEr
********************************************************************
book name: techmax publications datawarehousing and mining by arti deshpande n pallavi halarnkar
*********************************************

Views: 38736
fun 2 code

Naive Bayes is a machine learning algorithm for classification problems. It is based on Bayes’ probability theorem. It is primarily used for text classification which involves high dimensional training data sets. A few examples are spam filtration, sentimental analysis, and classifying news articles. It is not only known for its simplicity, but also for its effectiveness. It is fast to build models and make predictions with Naive Bayes algorithm. Naive Bayes is the first algorithm that should be considered for solving text classification problem. Hence, you should learn this algorithm thoroughly.
This video will talk about below:
1. Machine Learning Classification
2. Naive Bayes Theorem
About us: HackerEarth is building the largest hub of programmers to help them practice and improve their programming skills.
At HackerEarth, programmers:
1. Solve problems on Algorithms, DS, ML etc(https://goo.gl/6G4NjT).
2. Participate in coding contests(https://goo.gl/plOmbn)
3. Participate in hackathons(https://goo.gl/btD3D2)
Subscribe Our Channel For More Updates : https://goo.gl/suzeTB
For More Updates, Please follow us on:
Facebook : https://goo.gl/40iEqB
Twitter : https://goo.gl/LcTAsM
LinkedIn : https://goo.gl/iQCgJh
Blog : https://goo.gl/9yOzvG

Views: 64685
HackerEarth

Naive Bayes Classification Algorithm – Solved Numerical Question 2 in Hindi
Data Warehouse and Data Mining Lectures in Hindi

Views: 7431
Easy Engineering Classes

Introduction to Bayesian theory and Bayes classification with an easy example.

Views: 32071
Saurabh Singh

Simple example of the Naive Bayes classification algorithm

Views: 121952
Francisco Iacobelli

Order my books at 👉 http://www.tek97.com/
Watch this video to understand how a problem in Naive Bayes is solved in data mining for classification on the given data set. Watch Now!
شاهد هذا الفيديو لفهم كيفية حل مشكلة في Naive Bayes في التنقيب عن البيانات للتصنيف على مجموعة البيانات المحددة. شاهد الآن!
Assista a este vídeo para entender como um problema em Naive Bayes é resolvido na mineração de dados para classificação no conjunto de dados fornecido. Assista agora!
Regardez cette vidéo pour comprendre comment un problème dans Naive Bayes est résolu dans l'exploration de données pour la classification sur l'ensemble de données donné. Regarde maintenant!
Sehen Sie sich dieses Video an, um zu verstehen, wie ein Problem in Naive Bayes im Data Mining zur Klassifizierung auf dem gegebenen Datensatz gelöst wird. Schau jetzt!
Mire este video para comprender cómo se resuelve un problema en Naive Bayes en la extracción de datos para su clasificación en un conjunto de datos determinado. ¡Ver ahora!
Посмотрите это видео, чтобы понять, как проблема в Naive Bayes решена в области интеллектуального анализа данных для классификации по данному набору данных. Смотри!
⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
Add me on Facebook 👉https://www.facebook.com/renji.nair.09
Follow me on Twitter👉https://twitter.com/iamRanjiRaj
Read my Story👉https://www.linkedin.com/pulse/engineering-my-quadrennial-trek-ranji-raj-nair
Visit my Profile👉https://www.linkedin.com/in/reng99/
Like TheStudyBeast on Facebook👉https://www.facebook.com/thestudybeast/
⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
For more such videos LIKE SHARE SUBSCRIBE
Iphone 6s : http://amzn.to/2eyU8zi
Gorilla Pod : http://amzn.to/2gAdVPq
White Board : http://amzn.to/2euGJ7F
Duster : http://amzn.to/2ev0qvX
Feltip Markers : http://amzn.to/2eutbZC

Views: 245
Ranji Raj

My web page:
www.imperial.ac.uk/people/n.sadawi

Views: 177209
Noureddin Sadawi

This tutorial starts with introduction of Dataset. All aspects of dataset are discussed. Then basic working of RapidMiner is discussed. Once the viewer is acquainted with the knowledge of dataset and basic working of RapidMiner, following operations are performed on the dataset.
K-NN Classification
Naïve Bayes Classification
Decision Tree
Association Rules

Views: 35097
RapidMinerTutorial

Provides steps for applying Naive Bayes Classification with R.
Data: https://goo.gl/nCFX1x
R file: https://goo.gl/Feo5mT
Machine Learning videos: https://goo.gl/WHHqWP
Naive Bayes Classification is an important tool related to analyzing big data or working in data science field.
R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.

Views: 13197
Bharatendra Rai

#Naive_Bayes #Bayesian_Algorithm #Machine_Learning, #Classification_Technique #R_Studio
This is an elementary level video in which we learn to use the Bayesian Algorithm for classification. Ideally Bayesian Algorithm is appropriate in case of two levels of classification, but we have tried to use it on IRIS dataset which has 3 levels of classification. We have also used it on Breast Cancer data file from #Kaggle. You can find the Breast Cancer dataset from the link provided below. Stay tuned for more advanced level videos on Bayesian Algorithm.
https://www.dropbox.com/s/2qkskdmv7nywv7p/Breast_Cancer.csv?dl=0

Views: 153
Rajesh Dorbala

** Machine Learning Training with Python: https://www.edureka.co/python **
This Edureka video will provide you with a detailed and comprehensive knowledge of Naive Bayes Classifier Algorithm in python. At the end of the video, you will learn from a demo example on Naive Bayes. Below are the topics covered in this tutorial:
1. What is Naive Bayes?
2. Bayes Theorem and its use
3. Mathematical Working of Naive Bayes
4. Step by step Programming in Naive Bayes
5. Prediction Using Naive Bayes
Check out our playlist for more videos: http://bit.ly/2taym8X
Subscribe to our channel to get video updates. Hit the subscribe button above.
#MachineLearningUsingPython #MachineLearningTraning
How it Works?
1. This is a 5 Week Instructor led Online Course,40 hours of assignment and 20 hours of project work
2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course.
3. At the end of the training, you will be working on a real-time project for which we will provide you a Grade and a Verifiable Certificate!
- - - - - - - - - - - - - - - - -
About the Course
Edureka’s Machine Learning Course using Python is designed to make you grab the concepts of Machine Learning. The Machine Learning training will provide deep understanding of Machine Learning and its mechanism. As a Data Scientist, you will be learning the importance of Machine Learning and its implementation in python programming language. Furthermore, you will be taught Reinforcement Learning which in turn is an important aspect of Artificial Intelligence. You will be able to automate real life scenarios using Machine Learning Algorithms. Towards the end of the course, we will be discussing various practical use cases of Machine Learning in python programming language to enhance your learning experience.
After completing this Machine Learning Certification Training using Python, you should be able to:
Gain insight into the 'Roles' played by a Machine Learning Engineer
Automate data analysis using python
Describe Machine Learning
Work with real-time data
Learn tools and techniques for predictive modeling
Discuss Machine Learning algorithms and their implementation
Validate Machine Learning algorithms
Explain Time Series and it’s related concepts
Gain expertise to handle business in future, living the present
- - - - - - - - - - - - - - - - - - -
Why learn Machine Learning with Python?
Data Science is a set of techniques that enable the computers to learn the desired behavior from data without explicitly being programmed. It employs techniques and theories drawn from many fields within the broad areas of mathematics, statistics, information science, and computer science. This course exposes you to different classes of machine learning algorithms like supervised, unsupervised and reinforcement algorithms. This course imparts you the necessary skills like data pre-processing, dimensional reduction, model evaluation and also exposes you to different machine learning algorithms like regression, clustering, decision trees, random forest, Naive Bayes and Q-Learning.
For more information, please write back to us at [email protected]
Call us at US: +18336900808 (Toll Free) or India: +918861301699
Facebook: https://www.facebook.com/edurekaIN/
Twitter: https://twitter.com/edurekain
LinkedIn: https://www.linkedin.com/company/edureka

Views: 9725
edureka!

( Data Science Training - https://www.edureka.co/data-science )
This Naive Bayes Tutorial video from Edureka will help you understand all the concepts of Naive Bayes classifier, use cases and how it can be used in the industry. This video is ideal for both beginners as well as professionals who want to learn or brush up their concepts in Data Science and Machine Learning through Naive Bayes. Below are the topics covered in this tutorial:
1. What is Machine Learning?
2. Introduction to Classification
3. Classification Algorithms
4. What is Naive Bayes?
5. Use Cases of Naive Bayes
6. Demo – Employee Salary Prediction in R
Subscribe to our channel to get video updates. Hit the subscribe button above.
Check our complete Data Science playlist here: https://goo.gl/60NJJS
#NaiveBayes #NaiveBayesTutorial #DataScienceTraining #Datascience #Edureka
How it Works?
1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project
2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course.
3. You will get Lifetime Access to the recordings in the LMS.
4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate!
- - - - - - - - - - - - - -
About the Course
Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities.
- - - - - - - - - - - - - -
Why Learn Data Science?
Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework.
After the completion of the Data Science course, you should be able to:
1. Gain insight into the 'Roles' played by a Data Scientist
2. Analyse Big Data using R, Hadoop and Machine Learning
3. Understand the Data Analysis Life Cycle
4. Work with different data formats like XML, CSV and SAS, SPSS, etc.
5. Learn tools and techniques for data transformation
6. Understand Data Mining techniques and their implementation
7. Analyse data using machine learning algorithms in R
8. Work with Hadoop Mappers and Reducers to analyze data
9. Implement various Machine Learning Algorithms in Apache Mahout
10. Gain insight into data visualization and optimization techniques
11. Explore the parallel processing feature in R
- - - - - - - - - - - - - -
Who should go for this course?
The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course:
1. Developers aspiring to be a 'Data Scientist'
2. Analytics Managers who are leading a team of analysts
3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics
4. Business Analysts who want to understand Machine Learning (ML) Techniques
5. Information Architects who want to gain expertise in Predictive Analytics
6. 'R' professionals who want to captivate and analyze Big Data
7. Hadoop Professionals who want to learn R and ML techniques
8. Analysts wanting to understand Data Science methodologies
Please write back to us at [email protected] or call us at +918880862004 or 18002759730 for more information.
Facebook: https://www.facebook.com/edurekaIN/
Twitter: https://twitter.com/edurekain
LinkedIn: https://www.linkedin.com/company/edureka
Customer Reviews:
Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best."

Views: 39683
edureka!

This is a low math introduction and tutorial to classifying text using Naive Bayes. One of the most seminal methods to do so.

Views: 86372
Francisco Iacobelli

Here are some of the most commonly used classification algorithms -- Logistic Regression, Naïve Bayes, Stochastic Gradient Descent, K-Nearest Neighbours, Decision Tree, Random Forest and Support Vector Machine.
https://analyticsindiamag.com/7-types-classification-algorithms/
--------------------------------------------------
Get in touch with us:
Website: www.analyticsindiamag.com
Contact: [email protected]
Facebook: https://www.facebook.com/AnalyticsIndiaMagazine/
Twitter: http://www.twitter.com/analyticsindiam
Linkedin: https://www.linkedin.com/company-beta/10283931/
Instagram: https://www.instagram.com/analyticsindiamagazine/

Views: 6219
Analytics India Magazine

Views: 11118
GKMC datamining

أهلا وسهلا فيكم بالدرس الثاني من سلسلة شروحات خوارزميات التنقيب عن البيانات - خوارزمية الـ Naive Bayes .. بتمنى يكون الشرح واضح وإذا في عندكم أي تساؤل جاهزين إنشالله.
.
ماتنسوا تشاركوا السلسلة مع زملائكم وتدعموا القناة لنستمر بالعطاء ^^
.
Facebook: https://goo.gl/wdVMHs

Views: 860
Knowledge Network

This Naive Bayes Classifier tutorial video will introduce you to the basic concepts of Naive Bayes classifier, what is Naive Bayes and Bayes theorem, conditional probability concepts used in Bayes theorem, where is Naive Bayes classifier used, how Naive Bayes algorithm works with solved examples, advantages of Naive Bayes. By the end of this video, you will also implement Naive Bayes algorithm for text classification in Python.
The topics covered in this Naive Bayes video are as follows:
1. What is Naive Bayes? ( 01:06 )
2. Naive Bayes and Machine Learning ( 05:45 )
3. Why do we need Naive Bayes? ( 05:46 )
4. Understanding Naive Bayes Classifier ( 06:30 )
5. Advantages of Naive Bayes Classifier ( 20:17 )
6. Demo - Text Classification using Naive Bayes ( 22:36 )
To learn more about Machine Learning, subscribe to our YouTube channel: https://www.youtube.com/user/Simplilearn?sub_confirmation=1
You can also go through the Slides here: https://goo.gl/Cw9wqy
#NaiveBayes #MachineLearningAlgorithms #DataScienceCourse #DataScience #SimplilearnMachineLearning
- - - - - - - -
Simplilearn’s Machine Learning course will make you an expert in Machine Learning, a form of Artificial Intelligence that automates data analysis to enable computers to learn and adapt through experience to do specific tasks without explicit programming. You will master Machine Learning concepts and techniques including supervised and unsupervised learning, mathematical and heuristic aspects, hands-on modeling to develop algorithms and prepare you for the role of Machine Learning Engineer
Why learn Machine Learning?
Machine Learning is rapidly being deployed in all kinds of industries, creating a huge demand for skilled professionals. The Machine Learning market size is expected to grow from USD 1.03 billion in 2016 to USD 8.81 billion by 2022, at a Compound Annual Growth Rate (CAGR) of 44.1% during the forecast period.
You can gain in-depth knowledge of Machine Learning by taking our Machine Learning certification training course. With Simplilearn’s Machine Learning course, you will prepare for a career as a Machine Learning engineer as you master concepts and techniques including supervised and unsupervised learning, mathematical and heuristic aspects, and hands-on modeling to develop algorithms. Those who complete the course will be able to:
1. Master the concepts of supervised, unsupervised and reinforcement learning concepts and modeling.
2. Gain practical mastery over principles, algorithms, and applications of Machine Learning through a hands-on approach which includes working on 28 projects and one capstone project.
3. Acquire thorough knowledge of the mathematical and heuristic aspects of Machine Learning.
4. Understand the concepts and operation of support vector machines, kernel SVM, Naive Bayes, decision tree classifier, random forest classifier, logistic regression, K-nearest neighbors, K-means clustering and more.
5. Model a wide variety of robust Machine Learning algorithms including deep learning, clustering, and recommendation systems
The Machine Learning Course is recommended for:
1. Developers aspiring to be a data scientist or Machine Learning engineer
2. Information architects who want to gain expertise in Machine Learning algorithms
3. Analytics professionals who want to work in Machine Learning or artificial intelligence
4. Graduates looking to build a career in data science and Machine Learning
Learn more at: https://www.simplilearn.com/big-data-and-analytics/machine-learning-certification-training-course?utm_campaign=Naive-Bayes-Classifier-l3dZ6ZNFjo0&utm_medium=Tutorials&utm_source=youtube
For more information about Simplilearn’s courses, visit:
- Facebook: https://www.facebook.com/Simplilearn
- Twitter: https://twitter.com/simplilearn
- LinkedIn: https://www.linkedin.com/company/simp...
- Website: https://www.simplilearn.com
Get the Android app: http://bit.ly/1WlVo4u
Get the iOS app: http://apple.co/1HIO5J0

Views: 19202
Simplilearn

In this Python for Data Science tutorial, You will learn about Naive Bayes classifier (Multinomial Bernoulli Gaussian) using scikit learn and Urllib in Python to how to detect Spam using Jupyter Notebook.
Multinomial Naive Bayes Classifier
Bernoulli Naive Bayes Classifier
Gaussian Naive Bayes Classifier
This is the 32th Video of Python for Data Science Course! In This series I will explain to you Python and Data Science all the time! It is a deep rooted fact, Python is the best programming language for data analysis because of its libraries for manipulating, storing, and gaining understanding from data. Watch this video to learn about the language that make Python the data science powerhouse. Jupyter Notebooks have become very popular in the last few years, and for good reason. They allow you to create and share documents that contain live code, equations, visualizations and markdown text. This can all be run from directly in the browser. It is an essential tool to learn if you are getting started in Data Science, but will also have tons of benefits outside of that field. Harvard Business Review named data scientist "the sexiest job of the 21st century." Python pandas is a commonly-used tool in the industry to easily and professionally clean, analyze, and visualize data of varying sizes and types. We'll learn how to use pandas, Scipy, Sci-kit learn and matplotlib tools to extract meaningful insights and recommendations from real-world datasets.
Download Link for Cars Data Set:
https://www.4shared.com/s/fWRwKoPDaei
Download Link for Enrollment Forecast:
https://www.4shared.com/s/fz7QqHUivca
Download Link for Iris Data Set:
https://www.4shared.com/s/f2LIihSMUei
https://www.4shared.com/s/fpnGCDSl0ei
Download Link for Snow Inventory:
https://www.4shared.com/s/fjUlUogqqei
Download Link for Super Store Sales:
https://www.4shared.com/s/f58VakVuFca
Download Link for States:
https://www.4shared.com/s/fvepo3gOAei
Download Link for Spam-base Data Base:
https://www.4shared.com/s/fq6ImfShUca
Download Link for Parsed Data:
https://www.4shared.com/s/fFVxFjzm_ca
Download Link for HTML File:
https://www.4shared.com/s/ftPVgKp2Lca

Views: 14726
TheEngineeringWorld

simple and easy explanation of Naive Bayes Algorithm in Hindi

Views: 6901
Red Apple Tutorials

Document Download Link:
https://drive.google.com/file/d/0BzfRBPjlIsD8dG1VQnJLRkNEdFk/view?usp=sharing

Views: 1121
Mahmudul Hasan

Data Warehouse and Mining
For more: http://www.anuradhabhatia.com

Views: 6199
Anuradha Bhatia

An introduction to "naive Bayes" classifiers, in which we model the features as conditionally independent given the class.

Views: 63037
mathematicalmonk

How to apply naive bayes algorithm | classifier in weka tool ?
In this video, I explained that how can you apply naive bayes algorithm in weka tool.

Views: 4182
DataMining Tutorials

[http://bit.ly/N-Bayes] How can we use Naive Bayes classifier with continuous (real-valued) attributes? We estimate the priors and the means / variances for the Gaussians (two in this example).

Views: 28070
Victor Lavrenko

[http://bit.ly/N-Bayes] How can we distinguish spam from non-spam with a Naive Bayes classifier? We estimate the priors and multiple Bernoulli distributions for each class. Also learn how Naive Bayes can misclassify its own training examples.

Views: 31665
Victor Lavrenko

In this third video text analytics in R, I've talked about modeling process using the naive bayes classifier that helps us creating a statistical text classifier model which helps classifying the data in ham or spam sms message. You will see how you can tune the parameters also and make the best use of naive bayes classifier model.

Views: 3937
Data Science Tutorials

Views: 15999
Machine Learning- Sudeshna Sarkar

My web page:
www.imperial.ac.uk/people/n.sadawi

Views: 47674
Noureddin Sadawi

Watch on Udacity: https://www.udacity.com/course/viewer#!/c-ud262/l-478818537/m-482228628
Check out the full Advanced Operating Systems course for free at: https://www.udacity.com/course/ud262
Georgia Tech online Master's program: https://www.udacity.com/georgia-tech

Views: 86184
Udacity

Views: 1381
Data Science

Naive Bayes | Naive Bayes Algorithm | Naive Bayes Algorithm In Data Mining
*******************************************************
naive bayes, naive bayes classifier, naive bayes algorithm, naive bayes algorithm, naive bayes algorithm in data mining, naive bayes algorithm tutorial, naive bayes algorithm example, naive bayes algorithm explained, naive bayes model, naive bayes machine learning, naive bayes classifier python, naive bayes in r, naive bayes classifier in r, naive bayes algorithm is useful for, naive bayes assumption, naive bayes accuracy, naive bayes advantages, naive bayes example, naive bayes sklearn, naive bayes classifier example,
Please Subscribe My Channel

Views: 759
Learning With Mahamud

Take the Full Course of Datawarehouse
What we Provide
1)22 Videos (Index is given down) + Update will be Coming Before final exams
2)Hand made Notes with problems for your to practice
3)Strategy to Score Good Marks in DWM
To buy the course click here: https://goo.gl/to1yMH
or Fill the form we will contact you
https://goo.gl/forms/2SO5NAhqFnjOiWvi2
if you have any query email us at
[email protected]
or
[email protected]
Index
Introduction to Datawarehouse
Meta data in 5 mins
Datamart in datawarehouse
Architecture of datawarehouse
how to draw star schema slowflake schema and fact constelation
what is Olap operation
OLAP vs OLTP
decision tree with solved example
K mean clustering algorithm
Introduction to data mining and architecture
Naive bayes classifier
Apriori Algorithm
Agglomerative clustering algorithmn
KDD in data mining
ETL process
FP TREE Algorithm
Decision tree

Views: 148058
Last moment tuitions

Full course: https://www.udemy.com/data-science-and-machine-learning-with-python-hands-on/?couponCode=DATATUBE
We'll actually write a working spam classifier, using real email training data and a surprisingly small amount of code!

Views: 4924
Sundog Education

Step by step on the next video
http://lazeybutexpert.com

Views: 1566
lazybutexpert tutorial

Website + download source code @ http://www.zaneacademy.com

Views: 4527
zaneacademy

This video is part of an online course, Intro to Machine Learning. Check out the course here: https://www.udacity.com/course/ud120. This course was designed as part of a program to help you and others become a Data Analyst.
You can check out the full details of the program here: https://www.udacity.com/course/nd002.

Views: 53287
Udacity

Implementation of Naive Bayes Classifier in R using dataset mushroom from the UCI repository.
You may wanna add pakages e1071 and rminer in R because they were not present in R x64 3.3.1 by default.
Music - Daft Punk - Instant Crush ft. Julian Casblancas

Views: 14610
NISHANT KAUSHIK 14BCE0398

This set of videos come from Andrew Ng's courses on Stanford OpenClassroom at http://openclassroom.stanford.edu/MainFolder/HomePage.php
OpenClassroom is the predecessor of the famous MOOC platform Coursera. However, some of these videos are not published in Coursera Machine Learning course, i.e., Newton's Methods, Naive Bayes, etc. We selected some of them to share with you.

Views: 35600
Wang Zhiyang

Demonstrating how to do Bayesian Classification, Nearest Neighbor, K means Clustering using WEKA . Generating data set and Probability Density Function using MATLAB.
Important links:
To know more about .arff formats go to: http://www.cs.waikato.ac.nz/ml/weka/arff.html
Data sets: http://repository.seasr.org/Datasets/UCI/arff/
Online matlab: http://octave-online.net/

Views: 31489
Niranjan Singh

The algorithm of choice, at least at a basic level, for text analysis is often the Naive Bayes classifier. Part of the reason for this is that text data is almost always massive in size. The Naive Bayes algorithm is so simple that it can be used at scale very easily with minimal process requirements.
Playlist link: https://www.youtube.com/watch?v=FLZvOKSCkxY&list=PLQVvvaa0QuDf2JswnfiGkliBInZnIC4HL&index=1
sample code: http://pythonprogramming.net
http://hkinsley.com
https://twitter.com/sentdex
http://sentdex.com
http://seaofbtc.com

Views: 63501
sentdex

This set of videos come from Andrew Ng's courses on Stanford OpenClassroom at http://openclassroom.stanford.edu/MainFolder/HomePage.php
OpenClassroom is the predecessor of the famous MOOC platform Coursera. However, some of these videos are not published in Coursera Machine Learning course, i.e., Newton's Methods, Naive Bayes, etc. We selected some of them to share with you.

Views: 19636
Wang Zhiyang

This video explains the concept of classification of text from a set of documents using a Naive Bayes Classifier approach.
This video also deals with the concept of Bayes Theorem.
We have explained the topic using a sample dataset of text which is classified as of whether it belongs to "sports" category or not.
We train the model and then classify a new sentence 'A very close game' by finding its probability for belonging to "sports" category or not. The most likely probability is the final category, that sentence belongs to.
Naive Bayes is a machine learning algorithm for classification problems. It is based on Bayes’ probability theorem. Naive Bayes classifier is primarily used for text classification which involves high dimensional training data sets. A few examples are spam filtration, sentimental analysis, and classifying news articles. Naive Bayes is not only known for its simplicity, but also for its effectiveness. Naive Bayes is fast to build models and make predictions with the Naive Bayes algorithm. Naive Bayes is the first algorithm that should be considered for solving a text classification problem. Hence, you should learn this algorithm thoroughly.
For any queries or suggestions, Write to us at [email protected]
We value your feedback.
Thank You!!
Visit Again!!

Views: 3848
Code Wrestling

Hii there from Codegency!
We are a team of young software developers and IT geeks who are always looking for challenges and ready to solve them, Feel free to contact us..
Do visit my instagram page and also like us on facebook, stay connected :)
Instagram: https://www.instagram.com/code_gency/
Facebook: https://www.facebook.com/cgency/
Twitter : https://www.twitter.com/codegency
Contact: +919769620035, +918108849398
For Blackbook Writeups & Descriptions: https://codegency.blogspot.in
For Latest Notes & References: https://sites.google.com/view/itscholar/home

Views: 337
Codegency

Introduction
Heart Diseases remain the biggest cause of deaths for the last two epochs.
Recently computer technology develops software to assistance doctors in making decision of heart disease in the early stage. Diagnosing the heart disease mainly depends on clinical and obsessive data.
Prediction system of Heart disease can assist medical experts for predicting heart disease current status based on the clinical data of various patients.
In this project, the Heart disease prediction using classification algorithm Naive Bayes, and Random Forest is discussed.
Naive Bayes Algorithm
The Naive Bayes classification algorithm is a probabilistic classifier. It is based on probability models that incorporate strong independence assumptions.
Naive Bayes is a simple technique for constructing classifiers models that assign class labels to problem instances.
It assume that the value of a particular feature is independent of the value of any other feature, given the class variable. For example, a fruit may be considered to be an apple if it is red, round, and about 10 cm in diameter. A naive Bayes classifier considers each of these features to contribute independently to the probability that this fruit is an apple, regardless of any possible correlations between the color, roundness, and diameter features.
Random Forest Technique
In this technique, a set of decision trees are grown and each tree votes for the most popular class, then the votes of different trees are integrated and a class is predicted for each sample.
This approach is designed to increase the accuracy of the decision tree, more trees are produced to vote for class prediction. This approach is an ensemble classifier composed of some decision trees and the final result is the mean of individual trees results.
Follow Us:
Facebook : https://www.facebook.com/E2MatrixTrainingAndResearchInstitute/
Twitter: https://twitter.com/e2matrix_lab/
LinkedIn: https://www.linkedin.com/in/e2matrix-thesis-jalandhar/
Instagram: https://www.instagram.com/e2matrixresearch/

Views: 443
E2MATRIX RESEARCH LAB

More Data Mining with Weka: online course from the University of Waikato
Class 2 - Lesson 6: Multinomial Naïve Bayes
http://weka.waikato.ac.nz/
Slides (PDF):
http://goo.gl/QldvyV
https://twitter.com/WekaMOOC
http://wekamooc.blogspot.co.nz/
Department of Computer Science
University of Waikato
New Zealand
http://cs.waikato.ac.nz/

Views: 18451
WekaMOOC

Cover letter for medical sales role

Cover letter for debt collector resume sample

Heading for apa annotated bibliography

Rn cover letter tips that actually got

© 2018 International currency exchange

Better Than Any Blockchain. Built on the most advanced blockchain technology that is scalable, secure and interoperates different networks. Growing Global Network. Banks, payment providers and digital asset exchanges process and provide liquidity for payments on RippleNet, creating new, competitive cross-border payments services for their customers. Buy Ripple. How to buy Ripple. The payment is easily completed online in minutes by POLi Payments a business from Australia Post and after payment is complete the coins will be sent to your CoinSpot online wallet immediately. Ripple is a technology that acts as both a cryptocurrency and a digital payment network for financial transactions. Ripple was released in 2012 and co-founded by Chris Larsen and Jed McCaleb. The coin for the cryptocurrency is premined and labeled XRP. Ripple Swell. Digital Copy. Bitcoin Dust.